Physics of the Dangling Stick

Erik Neumann
www.MyPhysicsLab.com
erikn@MyPhysicsLab.com

January, 2002

The Dangling Stick is a massless rigid stick with a point mass on each end, see figure 1. One end of the stick is attached to a spring, and gravity acts. The equations of motion are derived by the Lagrangian method.
We will use subscript 1 for the mass at the spring-stick intersection, and subscript 2 for the mass at the free end of the stick.

The three independent variables are:
θ angle of spring ($0=$ vertical downwards)
$\phi \quad$ angle of stick $(0=$ vertical downwards $)$
r length of spring
The cartesian position of the point masses is given by R_{1}, R_{2}.
The other constants used are listed below.

Figure 1: Variables for Dangling Stick

```
m},\mp@subsup{m}{2}{}\quad\mathrm{ mass of the point masses
    L length of stick
    k spring stiffness constant
    h spring rest length
    g gravity constant
```


1 Kinematics

First we calculate the kinematics. That is, we find expressions for the positions R_{1}, R_{2} of the two masses in terms of the above variables. Note that there is no information about forces here, kinematics is mostly just geometry.

$$
\begin{gather*}
R_{1}=\{r \sin \theta,-r \cos \theta\} \tag{1}\\
R_{2}=\{r \sin \theta+L \sin \phi,-(r \cos \theta+L \cos \phi)\} \tag{2}
\end{gather*}
$$

The two components correspond to $\{x, y\}$ respectively. Next we differentiate to get the velocities of the masses.

$$
\begin{gather*}
\dot{R_{1}}=v_{1}=\{r \dot{\theta} \cos \theta+\dot{r} \sin \theta,-\dot{r} \cos \theta+r \dot{\theta} \sin \theta\} \tag{3}\\
\dot{R_{2}}=v_{2}=\{r \dot{\theta} \cos \theta+\dot{r} \sin \theta+L \dot{\phi} \cos \phi,-\dot{r} \cos \theta+r \dot{\theta} \sin \theta+L \dot{\phi} \sin \phi\} \tag{4}
\end{gather*}
$$

2 Energy and the Lagrangian

Next we get separate expressions for the kinetic energy T and potential energy V of the system. The difference of the two is the Lagrangian \mathcal{L}.

The kinetic energy is given by the standard formula $\frac{1}{2} m v^{2}$ but here we keep in mind that v is a vector and so use the dot product.

$$
\begin{equation*}
T=\frac{m_{1}}{2} v_{1} \cdot v_{1}+\frac{m_{2}}{2} v_{2} \cdot v_{1} \tag{5}
\end{equation*}
$$

The potential energy is from the spring energy and the gravitational potential of the two point masses.

$$
\begin{equation*}
V=\frac{k}{2}(r-h)^{2}-m_{2} g(r \cos \theta+L \cos \phi)-m_{1} g r \cos \theta \tag{6}
\end{equation*}
$$

The Lagrangian is the difference between the two

$$
\begin{equation*}
\mathcal{L}=T-V \tag{7}
\end{equation*}
$$

3 Lagrangian Equations

Now we evaluate the Lagrangian equation once for each of the three independent variables.

$$
\begin{align*}
& 0=\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}}\right)-\frac{\partial \mathcal{L}}{\partial \theta} \tag{8}\\
& 0=\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right)-\frac{\partial \mathcal{L}}{\partial \phi} \tag{9}\\
& 0=\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right)-\frac{\partial \mathcal{L}}{\partial r} \tag{10}
\end{align*}
$$

4 Equations of Motion

The three Lagrangian equations can now be solved to find expressions for the second derivatives $\ddot{\theta}, \ddot{\phi}, \ddot{r}$. After using a computer algebra program such as Mathematica we find the following equations of motion.

$$
\begin{array}{r}
\ddot{\theta}=\frac{1}{2 m_{1}\left(m_{1}+m_{2}\right) r}\left(k m_{2}(h-r) \sin (2 \theta-2 \phi)-2 g m_{1}\left(m_{1}+m_{2}\right) \sin \theta\right. \\
\left.-4 m_{1}\left(m_{1}+m_{2}\right) \dot{r} \dot{\theta}+2 L m_{1} m_{2} \dot{\phi}^{2} \sin (\theta-\phi)\right) \tag{11}
\end{array}
$$

$$
\begin{align*}
& \ddot{r}=\frac{1}{2 m_{1}\left(m_{1}+m_{2}\right)}\left(2 k h m_{1}+k h m_{2}-2 k m_{1} r-k m_{2} r+2 m_{1}^{2} r \dot{\theta}^{2}+2 m_{1} m_{2} r \dot{\theta}^{2}\right. \\
& \left.+2 g m_{1}\left(m_{1}+m_{2}\right) \cos \theta+2 L m_{1} m_{2} \dot{\phi}^{2} \cos (\theta-\phi)-k m_{2}(h-r) \cos (2 \theta-2 \phi)\right) \tag{12}
\end{align*}
$$

$$
\begin{equation*}
\ddot{\phi}=\frac{k(h-r) \sin (\theta-\phi)}{L m_{1}} \tag{13}
\end{equation*}
$$

These equations are of the form needed to use with the Runge-Kutta algorithm to numerically solve the equations.

